Image

Un ensemble d’article qui permettent de mieux comprendre comment traiter les images (photos). datacorner y aborde les formats techniques indispensables à connaitre pour mieux utiliser ces informations numériques. Le plus ? des cas d’utilisation concrets et décris pas à pas …


YOLO (Partie 1) Introduction à YOLO avec Darknet 7

Nous allons voir dans cet article, comment avec le réseau de neurones YOLO nous pourrons très simplement détecter plusieurs objets dans une photo. L’objectif n’est pas d’entrer dans le détail de l’implémentation de ce réseau de neurones (beaucoup plus complexe qu’un simple CNN séquentiel) mais plutôt de montrer comment utiliser l’implémentation qui a été réalisée en C++ et qui se nomme Darknet.


VGG et Transfer Learning 3

Dans cet article nous allons aborder le concept de Transfer Learning … ou comment éviter de refaire un apprentissage long et consommateur en réutilisant partiellement un réseau de neurones pré-entrainé. Pour ce faire nous utiliserons un réseau qui fait référence en la matière : VGG-Net (vgg16).


Traitement d’images (partie 6: Filtres & Convolution) 7

Nous allons aborder dans cet article une famille de filtre très utilisée par tous les logiciels de retouches (comme Photoshop ou Gimp). En fait et pour aller plus loin (sans non plus pour autant « sploiler » les articles suivants) ce principe de convolution va aussi être très utilisés par les réseaux de neurones (Deep Learning) … mais nous verrons cela plus tard. Focalisons nous tout d’abord sur le principe de filtre et plus précisément de convolution.